Биполярный транзистор. Расчет усилителя с ОЭ. Часть 3

01.11.2016 20:18

В прошлой статье мы с вами говорили о самой простой схеме смещения транзистора. Эта схема (рисунок ниже) зависит от коэффициента бета, а он в свою очередь зависит от температуры, что не есть гуд. В результате на выходе схемы могут появиться искажения усиливаемого сигнала.

 

 

 

Чтобы такого не произошло, в эту схему добавляют еще парочку резисторов и в результате получается схема с 4-мя резисторами:

 

Резистор между базой и эмиттером назовем Rбэ , а резистор, соединенный с эмиттером, назовем Rэ. Теперь, конечно же, главный вопрос: "Зачем они нужны в схеме?"

 

Начнем, пожалуй, с Rэ.

Как вы помните, в предыдущей схеме его не было. Итак, давайте предположим, что по цепи +Uпит---->Rк -----> коллектор---> эмиттер--->Rэ ----> земля бежит электрический ток, с силой в несколько миллиАмпер (если не учитывать крохотный ток базы, так как Iэ = Iк + Iб ) Грубо говоря, у нас получается вот такая цепь:

 

Следовательно, на каждом резисторе у нас будет падать какое-то напряжение. Его величина  будет зависеть от силы тока в цепи, а также от номинала самого резистора.

 

Чуток упростим схемку:

Rкэ  - это сопротивление перехода коллектор-эмиттер. Как вы знаете, оно в основном зависит от базового тока.

 

В результате, у нас получается простой делитель напряжения, где

Мы видим, что  на эмиттере уже НЕ БУДЕТ напряжения в ноль Вольт, как это было в прошлой схеме. Напряжение на эмиттере уже будет  равняться падению напряжения на резисторе Rэ .

 

А чему равняется падение напряжения на Rэ ? Вспоминаем закон Ома и высчитываем:

Как мы видим из формулы, напряжение на эмиттере будет равняться произведению силы тока в цепи на номинал сопротивления резистора Rэ . С этим вроде как разобрались. Для чего вся эта канитель, мы разберем чуть ниже.

 

 

Какую же функцию выполняют резисторы Rб и Rбэ ?

Именно эти два резистора представляют из себя опять же простой делитель напряжения. Они задают определенное напряжение на базу, которое будет меняться, если только поменяется +Uпит, что бывает крайне редко.  В остальных случаях напряжение на базе будет стоять мертво.

 

Вернемся к Rэ .

Оказывается, он выполняет самую главную роль в этой схеме.

Предположим, у нас из-за нагрева транзистора начинает увеличиваться ток в этой цепи.

 

Теперь разберем поэтапно, что происходит после этого.

а) если увеличивается ток в этой цепи, то следовательно увеличивается и падение напряжения на резисторе Rэ .

б) падение напряжения на резисторе Rэ  - это и есть напряжение на эмиттере Uэ.  Следовательно, из-за увеличения силы тока в цепи Uэ стало чуток больше.

в) на базе у нас фиксированное напряжение Uб , образованное делителем из резисторов Rб  и Rбэ

г) напряжение между базой эмиттером высчитывается по формуле Uбэ = Uб - Uэ . Следовательно, Uбэ станет меньше, так как Uэ увеличилось из-за увеличенной силы тока, которая увеличилась из-за нагрева транзистора.

д) Раз Uбэ уменьшилось, значит и сила тока Iб , проходящая через базу-эмиттер  тоже уменьшилась. 

е) Выводим из формулы ниже Iк

Iк =β х Iб

Следовательно, при уменьшении базового тока, уменьшается и коллекторный ток ;-) Режим работы схемы приходит в изначальное состояние. В результате схема у нас получилась с отрицательной обратной связью, в роли которой выступил резистор Rэ . Забегая вперед, скажу, что Отрицательная Обратная Связь (ООС) стабилизирует схему, а положительная наоборот приводит к полному хаосу, но тоже иногда используется в электронике.

 

 

Ладно, ближе к делу. Наше техническое задание звучит так:

Рассчитать каскад на биполярном транзисторе КТ315Б с коэффициентом усиления равным KU =10Uпит = 12 Вольт.

 

1) Первым делом находим из даташита  максимально допустимую рассеиваемую мощность, которую транзистор может рассеять на себе в окружающую среду. Для моего транзистора это значение равняется 150 миллиВатт.  Мы не будем выжимать из нашего транзистора все соки, поэтому уменьшим нашу рассеиваемую мощность, умножив на коэффициент 0,8:

 

Pрас = 150х0,8=120 миллиВатт.

 

2) Определим напряжение на Uкэ . Оно должно равняться половине напряжения Uпит.

 

Uкэ = Uпит / 2 = 12/2=6 Вольт.

 

3) Определяем ток коллектора:

 

Iк = Pрас / Uкэ  = 120x10-3 / 6 = 20 миллиАмпер.

 

4) Так как половина напряжения упала на коллекторе-эмиттере Uкэ , то еще половина должна упасть на резисторах. В нашем случае 6 Вольт падают на резисторах Rк  и Rэ . То есть получаем:

 

Rк + Rэ  = (Uпит / 2) / Iк = 6 / 20х10-3 = 300 Ом.

 

Rк + Rэ  = 300, а Rк =10Rэ  , так как  KU = Rк / Rэ , а мы взяли KU =10 ,

то составляем небольшое уравнение:

10Rэ + Rэ = 300

11Rэ = 300

Rэ = 300 / 11 = 27 Ом

Rк = 27х10=270 Ом

 

5) Определим ток базы Iбазы из формулы:

 

Коэффициент бета мы замеряли в прошлом примере. Он у нас получился около 140.

 

Значит,

 

Iб = Iк  / β = 20х10-3 /140 = 0,14 миллиАмпер

 

6) Ток делителя напряжения Iдел , образованный резисторами Rб  и Rбэ , в основном выбирают так, чтобы он был в 10 раз больше, чем базовый ток Iб :

 

Iдел = 10Iб = 10х0,14=1,4 миллиАмпер.

 

7) Находим напряжение на эмиттере по формуле:

 

Uэ= Iк Rэ= 20х10-3 х 27 = 0,54 Вольта

 

8) Определяем напряжение на базе:

 

Uб =  Uбэ + Uэ

 

Давайте возьмем среднее значение падения напряжения на базе-эмиттер Uбэ = 0,66 Вольт. Как вы помните - это падение напряжения на P-N переходе.

 

Следовательно, Uб =0,66 + 0,54 = 1,2 Вольта. Именно такое напряжение будет теперь находиться у нас на базе.

 

9) Ну а теперь, зная напряжение на базе (оно равняется 1,2 Вольта), мы можем рассчитать номинал самих резисторов.

 

Для удобства расчетов прилагаю кусочек схемы каскада:

Итак, отсюда нам надо найти номиналы резисторов. Из формулы закона Ома высчитываем значение каждого резистора.

Для удобства пусть у нас падение напряжения на Rб называется U1 , а падение напряжения на Rбэ будет U2 .

Используя закон Ома, находим значение сопротивлений каждого резистора.

Rб = U1 / Iдел = 10,8  / 1,4х10-3 = 7,7 КилоОм. Берем из ближайшего ряда 8,2 КилоОма

Rбэ = U2 / Iдел = 1,2 / 1,4х10-3 = 860 Ом. Берем из ряда 820 Ом.

 

В результате у нас будут вот такие номиналы на схеме:

 

 

Одной теорией и расчетами сыт не будешь, поэтому собираем схему в реале и проверяем ее в деле. У меня получилась вот такая схемка:

 

 

Итак, беру свой цифровой осциллограф и цепляюсь щупами на вход и выход схемы. Красная осциллограмма - это входной сигнал, желтая осциллограмма - это выходной усиленный сигнал.

 

 

Первым делом подаю синусоидальный сигнал с помощью своего китайского генератора частоты:

Как вы видите, сигнал усилился почти в 10 раз, как и предполагалось, так как наш коэффициент усиления был равен 10.  Как я уже говорил, усиленный сигнал по схеме с ОЭ находится в противофазе, то есть сдвинут на 180 градусов.

 

 

Давайте подадим еще треугольный сигнал:

Вроде бы гуд. Если присмотреться, то есть небольшие искажения. Дешевый китайский генератор частоты дает о себе знать).

 

 

Если вспомнить осциллограмму схемы с двумя резисторами

 

 

то можно увидеть существенную разницу в усилении треугольного сигнала

 

 

 

Что же можно еще сказать о схеме усилителя с ОЭ и с 4-мя резисторами?

Выходное сопротивление такой схемы в основном определяется номиналом резистора Rк . В данном случае это 270 Ом. Входное сопротивление Rвх примерно равняется: Rвх = Rэβ. В данном случае Rвх = 27х140=3780 Ом.

 

Схема с ОЭ во времена пика популярности биполярных транзисторов использовалась как самая ходовая. И этому есть свое объяснение:

Во-первых, эта схема усиливает как по току, так и по напряжению, а следовательно и по мощности, так как P=UI.

Во-вторых, ее входное сопротивление намного больше, чем выходное, что делает эту схему отличной малопотребляемой нагрузкой и отличным источником сигнала для следующих за ней нагрузок.

 

Ну а теперь немного минусов:

1) схема потребляет небольшой ток, пока находится в режиме ожидания. Это значит, питать ее долго от батареек не имеет смысла.

2) она уже морально устарела в наш век микроэлектроники. Для того, чтобы собрать усилитель, проще купить готовую микросхему и сделать на ее базе мощный и простой усилок.

 Продолжение-------> 

<-------Предыдущая статья

 

Читайте также